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Abstract  
Using an autonomous pod of unmanned aerial vehicles, we can take advantage of the fact that the 
UAVs can share visual data with each other in the air to better understand an area of land. If the 
sensors placed on board each UAV in a pod detected an intensity of heat for example, we can mark 
these intensity levels in a matrix, where the location of each entry in the matrix represented some 
earth coordinate. We can then run some learning algorithm on the entries of the matrix to better 
predict where more hotspots (or any general point of interest) are located, if the hotspots tend to 
be near each other (in the case of a fire for example). 
 

Case of Use Example 

A team of firefighters could use such a framework equipped with infrared cameras to scan a forest 
during a wildfire to examine where the fire currently is and where the fire is spreading to via a live 
relayed overlay on top of a map. Due to the nature of this kind of problem, we need to use Learning 
to avoid “dumb-scanning” an area (zigzagging or sweeping through some area with no intention of 
finding something of interest). Hot spots need to be scanned sooner than later in the case of an 
emergency fire, and using a learning paradigm should be used to motivate the direction of travel for 
the UAVs in the direction of areas that are predicted to be hot. This way, the hot spots are scanned 
first, and in the case of the firefighting example, the fire can be extinguished there sooner. 
 

Methods 

Data Set 
If we have  UAVs in a pod, we can have the drones independently gather aerial hotspot data andN  

form packets of time, Earth coordinates, and interest level in real time. They can then share these 
packets with one another, and independently form their own “hot spot” maps. They can then use 
this information to decide on which areas to scan next.  
Our feature list is a matrix of “hotspots”. The data can be displayed in a matrix of size . Eachn × m  

entry (area) on the matrix represents a scanned or unscanned area in the scan perimeter, equal to 
the area of the map pixel, , representing it.M ij   
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Initially the M matrix will be a  matrix of dimension . When the drones begin scanning− 1n×m n × m  

the area, the M entries will be populated with a level of interest from  to , where 0 means0 K  

nothing of interest was detected, and  is the maximum possible value of interest. We canK  

approximate the width of each entry to be approximately the same latitudinal distance (since the 
curvature of the Earth is negligible for our relatively small UAV scannable regions), and the length 
of each entry can represent some longitudinal distance.  
 

Implementation & Methods 
I used a K-Nearest Neighbors method to predict whether our unscanned -1 entries (which 
correspond to some real area with a bound of longitudinal and latitudinal coordinates), are 
“hotspots” or not. If some unscanned area is predicted to be a hotspot, the drones will have more 
weight in choosing to move in that direction. 
I sought to determine if the KNN method would be a successful method for predicting where 
hotspots lie, and whether or not it could predict and assist the drones that helped the algorithm. I 
used Python (and the MatPlotLib and NumPy libraries) to assist me in the task of creating a 
multi-drone simulation framework, and graphing the results live. 
 
Assumptions 
Since this is a pod of drones flying together with the ability to share data packets in the air, we will 
take advantage of the fact that the UAVs in the pod can help each other quickly scan an area by 
sharing data about what they see, namely the coordinate locations (from GPS) of the points of 
interest (from a sensor pointing down to the ground). 
We will then assume that a packet transmission protocol is on-board each UAV, and that they can 
send, receive, and parse these packets and store the points and interest-levels in an internal map in 
memory. 
 
Algorithm 
Initially, the drones know nothing of the field. Before they set off for flight, I initially set a bloom of 
high intensity flame on the map, and the drones then went off on flight.  The UAVs initially linearly 
scan an area (sweeping left to right, up to down) until one of them found a hotspot and shared the 
data. The drones then computed a KNN (here, in order to take the whole map intoax(n, )K = m m  

account) to decide on which direction to move to next (up, down, left, right, and the diagonals). I 
then plotted the prediction map, along with the drone point of view map. The collective map of the 
scanned area of the drones is plotted live in the simulation. 
 
Every iteration of the scan, each drone will independently calculate the total map to predict the 
weights. 
 
Let be an  matrix held in the program memory of the algorithm, which represents a map ofM n × m  

predictions of hotspots, where each entry represents a prediction of how “interesting” a coordinate 
is. Initially, we set , a matrix of all -1 valued entries. We then allow the drones to “dumb−M = 1n×m  

scan” an area (sweeping left, right, up, and down along the perimeter of the map), while they scan 
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the area with whatever sensor they have on-board. The drones scan a sub-area (the ij-th entry of 
the matrix M) each iteration of the algorithm and find that that sub-area has an interest level l  

between 0 and K, ., l 0, ]ηij = l  ∈ [ K  

 
For an that represents a predicted map where each entry is a prediction or measuredM ∈ ℝn×m  

value of interest intensity: 
 

M ab = ||ϕ ||∑
n

i=1
∑
m

j=1
ηij ij − ρab 2

 

 

 
Where is the interest point intensity of the ij-th vesicle (entry in the matrix) on the map. is aηij  ϕij  

vector that has the i,j coordinates in a 2-vector i.e. . is the vesicle on the map the ϕij = i j[ ]T  ρab  

weights are being calculated into. 
 

Now, if the a UAV is currently at the point , the UAV will move to the most weighted positiona b][ T  

in the set: 

, as long as the B = [a  b] , [a b ] , [a  b ] , [a  b] , [a b ] , [a  b ]{ + 1 T  + 1 T  + 1 + 1 T  − 1 T  − 1 T  − 1 − 1 T}  

point is in the map and not previously traversed upon. 
 
Since the UAV, in this algorithm, is limited to moving in 6 different positions (|B|), needs to beM ab  

calculated only 6 times to see which direction has the most weight. 
 

Results 
Apart from getting the machine learning part to work, I had to first create the drone flying over fire 
test simulation framework. I also wanted to make sure that the drones scanned the entire field, and 
not starve parts of a map in favor of hotspots that were already found. This required using 
hysteresis on already traveled-to coordinates, and putting less weight on moving to spots that were 
already traveled to.  
For KNN, I set K equal to the square of the size of the grid. In the end, I was impressed with the 
agility of the algorithm to find the hotspots initially, and still scan the rest of the map.  
KNN worked well for giving us relative probabilities for every point on the map, where 
unsupervised learning was not necessary. Images of the results are below, and animations along 
with the source code of the simulation can be found at: https://github.com/SargisYonan/uav_ml 
 
The simulation can be run on your own machine by executing the following commands in a shell 
(dependencies: Python, matplotlib, numpy, git for cloning the repository): 
 

$ git clone https://github.com/SargisYonan/uav_ml 

$ cd uav_ml 

$ python main.py 
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The points of the fake bloom of high interest level, the number of UAVs in the pod, and the size of 
the map are all configurable parameters in main.py. 
 

 
Figure 1 The master map of where the fire is located. This information is unknown to the UAVs 

initially until the map is completely scanned. 
 

 
Figure 2 Track the steps in finding the fire (3 drones) 
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Figure 3 Here the 3 drones found the bloom, and are moving on to scan the rest of the map (left). The 

KNN predicted map of the probabilities of where heat is coming from is on the right. 
 

 
Runtime Efficiency 
Recalculating the map every iteration of the of algorithm is very computationally expensive. The 

algorithm to calculate is something on the order of magnitude that might be(max(n, ) )  M ∈ Θ m 2  

infeasible for a low-powered microcontroller to handle while also estimating UAV attitude and 
running a stabilization controller. This is why this algorithm would most likely require a more 
computationally capable controller on-board the UAV, or also offload the algorithm to a ground 
station that would then report back a coordinate to fly to. 
 
Possible Optimizations 
Currently, the algorithm runs quickly initially because my implementation takes advantage of the 
fact that M is a mostly sparse matrix with “undefined” scan points. The matrix is stored as a 
linked-list of linked-lists and simply ignores the unscanned regions until they have been scanned. 
As the matrix M fills up, however, the algorithm is noticeably sluggish because more points must be 
factored in the KNN computation. 
To further optimize this algorithm, the map can be split into a sub-map and then be computed on. 
We can choose: 

, where  (i.e. set K-Nearest-Neighbor’s K to a smaller value) andS ∈ ℝf×g ⊆ M ∈ ℝn×m , gf ≤ n  ≤ m  

then compute 

||ϕ ||Sab = ∑
f

i=1
∑
g

j=1
ηij ij − ρab 2  

(max(n, ) ) (max(f , ) )  M ∈ O m 2 ≥ S ∈ Θ g 2  
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Which would increase the speed of the algorithm by some factor of .m ) n )( − f × ( − g  

 
Future Work 
I would like to include more learning abilities for pods of UAVs. Another possibility of the pod is to 
have the drones take off at set times in the day and night, scan the same area of land each time, and 
fly back home to charge and repeat. The pod would then “learn” the area for different times in the 
day (with possibly different sensors) during different times in the year. They would be able to alert 
a user of an anomaly that was detected. This is because they would have “learned” the area of land 
that they typically scan for different times of the day and year, and could therefore detect if 
something is “out of place”. 
 

Conclusion 
Though I was very satisfied with the results of the algorithm, the processing times of the KNN 
algorithm as the epochs increased were unbearably slow for the environment in which they would 
ideally run on (low-powered embedded systems that would only be computing attitude 
estimations, PIDs for flight stabilization, and simple packet transmission/parsing). In order to make 
this algorithm “fly”, a decent architecture would have to placed on board, and a dedicated process, 
controller, or thread would have to be devoted to running just this algorithm. 
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