Desighing & Implementing

An Internet-Connected Embedded System

Abstract: An introduction to embedded systems, embedded programming, and internet connected
embedded systems

Keywords: embedded, internet of things, IOT, Control Systems Engineering

Intended For: Beginners in Control Systems, Electrical and Computer Engineering
Citation Style Guide: IEEE

Sargis S Yonan

Intended AUIENCE. ... 1
Introduction & Background: Internet of Things..................oo 1
Controller Board Device Possibilities & Options.......................o, 3
Varieties of Microcontrollers and Which One To Choose
Comparing Microcontroller Specifications For Intended Purposes
Parts Needed
Embedded Software DesSign............c.oiiiiiiiii 8
Basic C Tutorial
Embedded C Memory
Embedded Programming Practices
Embedded Microcontroller Architectures & Consequences
Writing C Libraries
Developing A Larger Embedded Systems Project
Programming The Microcontroller.................o e 12
Assembly
Which ISCP (In-Serial Circuit Programmer) To Choose
How To Setup A UNIX Build Environment
How To Program The Board
Systems Programming Methodology and Convention..........................oco, 14
Basic Software Engineering Methodologies
Good Programming Style
Finite State Machines & Controller Logic
Controller Board Hardware Desigh & SeNnSOrs..............coiiiiiiiiiiieeeieee 20
Microcontroller Ports and Pins
Choosing The Right Sensors
Wireless Communications With A Microcontroller.......................c.on, 23
IEEE 802.15.4 (ZigBee) vs. IEEE 802.11x (Wi-Fi)
Wireless Communications Protocol Design & Implementation
Setting Up A Basic Remote Database
Designing and Writing a Server Daemon in Python

CONCIUSI ON e 27

L. Intended Audience

This a templated tutorial for those wishing to create their own loT devices. The tutorial will
integrate a microcontroller based board with custom firmware written by its user. Covered in this
tutorial: how to assemble the board, how to design an operational state machine, writing the
firmware to control the board with the state machine. The tutorial will also cover how to
implement a wireless controller and internet functionality to the device with a custom
communications protocol, all while using a project that | created as a working template.

The purpose of this project is to instruct those with intermediate hardware, electrical, and
computer engineering skills (prototype boarding, ICs, C programming, UNIX systems, and basic
circuit analysis skills), or a hard working beginner to begin constructing useful and smart
appliances, controllers, and auxiliary devices from scratch. The use of these devices in
everyday life will without a doubt improve one's life and make every day tasks done more

efficiently, simply because the user tailors the controller to their own tastes in software.

II. Introduction & Background: The Internet of Things

In the next decade, the consumer market will be flooded with internet enabled devices. A new
Internet of Things will allow users to control their appliances, monitor their home and device
usage, and open paths of discovery to newer gadgets and more efficient products for
consumers, those with health care needs, and government agencies. Anyone with intermediate
hardware, electrical, and computer engineering skills (prototype boarding, Digital and Analog
ICs, The C Programming Language, UNIX Systems, and basic circuit analysis skills), or a hard
working beginner with similar interests and/or experience can construct useful and smart
appliances, controllers, and auxiliary devices from scratch. The use of these devices in
everyday life will without a doubt improve one's life and make every day tasks done more
efficiently, simply because the user tailors the controller to their own tastes in software [5].
Since the market for 0T devices is relatively new, it would be most beneficial to those with both
the interest in the field and the know-how to build such devices to begin now, as the they can
more easily place their feet in the Internet of Things door. | will provide a templated tutorial for
those wishing to create their own loT devices. The tutorial will integrate a microcontroller based
board with custom firmware written by its user. The tutorial project will instruct the user on how
to assemble the board, how to design an operational state machine, and then write the firmware
to control the board with the state machine. The tutorial will also cover how to implement a

wireless controller and internet functionality to the device with a custom communications

protocol, all while using projects that | created as a working template. Before beginning, it would
be useful to those who are not familiar with 10T to learn the background and uses of these
devices.

Several loT devices have been available to governments and healthcare professionals for
various uses. The Chinese government began tracking trucks with hazardous waste and blood
donor samples using RFID tags built in. When these trucks would pass through various points in
Beijing, all samples and materials would be tracked and stored to an online database to ensure
that the delivery of materials reached the correct destination at the right times [6]. 0T also helps
developing nations have quality medical care through wireless communication devices to real
doctors remotely, as well as various medical testing equipment that would make it easy for
anyone to send various medical sample data to healthcare professionals remotely [7].
Humankind has gained invaluable assistance and efficiency through IoT in terms of
transportation and healthcare.

Internet enabled devices can be found in any retailer both online and in a big-box store as well.
The consumer market has gained new and high-tech products, such as: Internet controlled
wireless speakers, internet enabled printers, home gas detectors that send mobile notifications
to the inhabitants of a home, smart watches, smart pet collars, and many more devices. New
loT devices are blowing up the market. By 2020, the market is projected to reach $1.7 Trillion [2]
with over 50 billion Internet of Things devices [8]. Take for example, the Nest Thermostat. This
internet enabled thermostat that allows its user to control their home temperature with a
smartphone was purchased by Google for $3.2 Billion [1]. The device itself, is no more than a
microcontroller, a temperature sensor, and a Wi-Fi module with software that connects to the
user’'s home network, which my tutorial will cover. In the newest version, the thermostat learns
the user's usage statistics and uses them to change the temperature of the house accordingly.
This device, marked at $240, does no more than run a simple algorithm on simple hardware.
Any student half-way through their undergraduate Electrical or Computer Engineering program
with a creative solution to a problem can assemble a similar product with little effort.

Security risks are a common concern among those trying to be safe from data and device
intruders. It is understandable that someone would not want to have a thermostat be hijacked by
a hacker to have their house be below freezing temperatures. Luckily, much of the protection in
loT device lives in home network itself [4]. If the home local area network was compromised,
only then would a problem arise, but using common security practices (using a reliable

Anti-Virus and steering clear of any suspicious website and downloads), a network can remain

virtually safe from intruders. Without a doubt, a new era of hackers will exist, and a new field of
cyber protection will arise as a result, but that is a topic for another discussion altogether [4].
Since this market is widely expanding, and several new possibilities of products arise with a new
variable of connectedness through the internet, products that do not even exist today will take
over the market in the next decade. Those interested in the embedded hardware and software
fields can create new and useful devices for the consumer market. More competition will arise in
the market, and prices will go down in effect. With more engineers developing in this market, the
everyday life will be a much higher-tech one in little time. The methodology of the construction
of Internet of Things devices is a simple one that anyone can comprehend. The construction of
these devices is nearly trivial, and basic in terms of engineering methods [5], and they provide
students with excellent entry level projects that are easy to produce and impressive in
functionality.

The Internet of Things is an ever expanding spectrum of devices that allow humans to benefit
from the existence of likely the largest computer network in the universe, the Internet. With this
interconnected power of internet enabled products, the world can benefit from better health
care; safer transportation of goods, waste, and medical equipment; and cool gadgets for the

home and more.

III. Controller Board Device Possibilities & Options

Hardware

Depending on the features of the project (physical abilities of the system, code size, algorithm
efficiency), choosing the right brains can make or break any IoT project. Whether the device will
perform a simple feedback loop, or run a sophisticated routing algorithm, picking the right
microcontroller can bring more power to a project when needed and reduce headache down the
road. The most common microcontroller used in more simple systems, and the center of this
tutorial, contain either an 8-bit, 16-bit, or a
low-powered 32-bit chip. A rather popular
microcontroller for DIY projects, the Atmel
Atmega328p, an 8-bit AVR RISC-based
microcontroller containing a decent amount of
memory for most smaller scaled projects, 23

general purpose /O pins, three timers and

counters with compare modes, A/D converter,
Figure 1: An AVR Atmega 328F Microcontroller and it can run at 5V or less depending on clock
speed [9], and the chip can be purchased online
for under 5 dollars. Though there are other microcontrollers (Microchip’s PIC, Texas
Instruments’ MSP, or an ARM chip), through my personal experience and comfort with the AVR
series, along with the small startup cost to get the chip programmed, this tutorial will mostly
cover the AVR. This microcontroller has been featured as the main controlling logic for several

projects of mine, and is perfectly capable of being an loT controller as well.

In Order to program a microcontroller, the device’s program memory should be written to. You
will need an In-Circuit Serial Programming device to accomplish this. Depending on the device
being programmed, your ISCP will vary. For the AVR chip, a USBASPv2 ICSP will suffice. A
cheap USB ICSP like the USBASP can be found and purchased online at a cost below three
dollars.

To program this microcontroller, you will need, with addition to the ICSP and the microcontroller
itself, a crystal oscillator (16 MHz is typical and supported, but the AVR can run at 1 MHz or 8
MHz as well for lower powered purposes), two 22pF capacitors for the crystal, some copper

wire, a breadboard, an LED, and a 220 Ohm current limiting resistor for the LED. The setup for

the controller board can be assembled for less than ten dollars, and depending on the wireless

transceiver chosen for the project, should not exceed thirty to forty dollars.

To wire up the board, find the pinout for the microcontroller in the datasheet, and wire up the

basic components mentioned in the parts list.

(PCINT14/RESET) PCB [
{PCINT16/RXD) PDO L

(PCINT1F7TXD) PDY
(PCINT18/ANTO) PD2

(PCINT18/OC2ZB/INT1} PD3 [

(FCINT20/XCKITO) PD4

VGG L

GND

(PCINTEXTAL1/TOSC1) PBG [

(PCINTTXTAL2TOSCZ) PBY

(PCINT21/0C0B/T1) PD5 L

(PCINT22/0COASAING) PDE

(PCINT23/AIN1) PD7 |
(PCINTO/CLKONCP1) PBO [

Mo~ & W a =

2B

26
25
24
23

221

21
20
19
18
17
16

] PCS (ADCS/SCLPCINT13)
27

PC4 (ADCA/SDAPCINT12)
PC3 (ADCIPCINT11)
PC2 (ADC2/PCINT10)

1PC1 (ADC1/PCINTS)

PCO (ADCO/PCINTSE)
GND
AREF

1 AVCC

PBES (SCHK/PCINTS)

PB4 (MISOMPCINTA)

PB3 (MOSIVOCZAPCINTI)
PB2 (SSIOC1B/PCINTZ)

] PB1 (OC1APCINTY)

Figure 2: The AVR Atmega3Z28 Finout Diagram

1. Connect the ICSP’s:
a. MOSI — Pin 17

b. MISO — Pin 18
C.

d. SCK—Pin 19
e.

f.

/Reset (Active Low Reset Pin) — Pin 1

+5Volts — VCC (ICSP) — Pins: 7, 20, and 21
GND—GND (ICSP)—Pins 8 and 22

For a 328P/88P microcontroller
wire the Inline Serial Programmer
(you will need to find the pinout
diagram for your ISCP) to the
microcontroller, and then you will
need to connect your wanted to
components to the
microcontroller. Keep in mind that
if your microcontroller has the
Arduino bootloader burned onto it,
TXD/RXD (PDO & PD1) must be

disconnected from any devices.

2. Connect a 16MHz crystal oscillator to XTAL 1 & 2 via Pins 5 and 6 with a 22pF capacitors

from each of the crystal’s pins to common

3. Connect the 220 Ohm resistor to PB5 (Pin 16) in series with the LED in series with common

Now that the controller is physically complete, we will move on to software to learn how to

program the microcontroller.

IV. Embedded Software Design

The C Programming Language is an imperative programming language with many modern
features found in other languages like Python and Java, but without the hefty cost of overhead
and abstraction that those languages contain. C allows you to speak directly with hardware with
ease, and at a low memory cost. This is why C is still the language of choice for low-level
software applications like operating systems. Many people do not enjoy using the C language
because of all of the housekeeping involved with using the language, such as freeing unused
memory on the heap and keeping track of where some memory is pointing to, but these
nitty-gritty details that C forces you to maintain make the language optimal for low-powered and

cheaper processors, making it the perfect fit for a microcontroller.

If you're used to writing software on a personal computer for a personal computer, the operating
system you are running most likely is taking care of some heavy virtual to physical memory
management. Your OS also knows to dump and free memory and the proper procedure for
exiting a program safely all while running several programs on separate threads. A
microcontroller on the other hand does not have these sophisticated features, and most likely is
running only one program at a time since the program memory is only so large i.e. the
microcontroller has no operating system. When a program in the form of assembly instructions
for the processor is burned into the program memory, the processor simply executes one

instruction at a time, so the programmer must make sure to play safely with this power.

As a result, embedded software should never escape. Since there is no operating system to
handle the ended program, there is no telling where the program counter will point to in the
instruction cache, potentially executing a line of code that would devastate an entire project, like
allowing voltage through to a pin connected to a servo. To avoid this unwanted behavior, always

place your main program in an infinite loop.

#define TRUE 1
void main (void)
{
while (TRUE) // similarly for(;;) or do {} while (TRUE)
{
fool();
bar () ;

Most microcontrollers do not use a cache, and have a rather primitive pipeline, the AVR
Atmega328p, for example, has a two-stage pre-fetching pipeline, while modern intel processors
have up to twenty-five stages in their pipeline [10]. With this in mind, it becomes apparent that
certain techniques, such as struct packing, take no effect, while others do. Allocating memory
on the heap tends to be most efficient in terms of saving memory size, but checking the data
sheets to see how large the stack and heap are, or even if they are shared would be the first
step in deciding where memory should go.

To be a good programmer, it is also a good idea to pass variables to functions by reference.
This saves both time and memory since the processor needs not copy memory within and out of
the scope of a function. This means that your complex types should be defined in a header file,
and the corresponding .c file should include a definition for a function that returns a pointer to
the recently allocated block of memory. That pointer should be stored into some memory in
main, to be further passed to other subroutines.

For example (a temperature sensor library might include):

// temperature.h

#include <stdlib.h> // used for malloc

finclude <stdint.h> // used for unsigned types

#define ON 1

#define OFF 0

struct Temperature

{
float currentTemperature; // holds current temperature
uint8 t sensorState; // tells the user if the sensor is active
uintl6 t sensorID; // holds sensor ID for this particular

sensor

}i

// aliasing “struct Temperature” to just “Temperature”

typedef struct Temperature Temperature;

Temperature *InitializeTemperatureMemory (uintl6é t sensorID);
volid GrabTemperature (Temperature *temperatureMemory) :;

RR I S SR dh b b b b b b S S SR b b b b S b S IR Ih b b b b b S dE dh Sb Ib b b b b 2 S dh Sb b b b b b S S dh Sh b b b b S d S Sh b b b b b S g 4

*

// temperature.c
#include “temperature.h”

Temperature *InitializeTemperatureMemory (uintlé t ID)

{

Temperature *newMem = NULL;
newMem = (Temperature*)malloc(sizeof (Temperature));
if (newMem) //checking if newMem was allocated successfully

{

newMem->currentTemperature = GrabTemperature (newMem) ;
newMem->sensorState = ON;
newMem->sensorID = ID;

}

return newMem; // returns NULL if malloc fails

void GrabTemperature (Temperature *temperatureMemory, uintl6 t ID)
{

temperatureMemory->currentTemperature = GetTemperatureByID(ID);
}
// safely overwrites and removes any reference to the memory
void freeTemperatureMemory (Temperature *temperatureMemory)
{

temperatureMemory->sensorID = 0;

temperatureMemory->

free (temperatureMemory) ;

temperatureMemory = NULL;

RR I S SR Ih b b b b b b d S SR b b b b S b S S IR Ih b b b b b S JE dh Sb b b b b b 2 S dh Sh b b b b b S dh dh Sh b b b b b d SR Sh b b b b b g 4
*

// main.c
#define TRUE 1
void main (void)
{
Temperature *temperatureSensor = NULL;
temperatureSensor = InitializeTemperatureMemory (1) ;
while (TRUE) // similarly for(;;) or do {} while (TRUE)
{

GrabTemperature (temperatureSensor) ;

Another important concept to keep in mind to be more efficient with memory is using the correct
data type for a given situation. Using unsigned n-bit integers (uintn_t), instead of signed 32-bit
integers (int), not only saves memory, but makes more sense logistically. Double precision
IEEE-754 (double) type floating points (often times 64-bit types on a personal computer), are

often not even counted as double precision, and are truncated to 32-bit float types (check

datasheet for your specific controller). Types like bool should be avoided altogether, and
replaced with unsigned integers equal to a #defined TRUE or FALSE. For smaller code size, be

sure to check out the pdf [citation 11] for tested methods for smaller code size on Atmel chips.

As always, libraries should have header files that define the prototypes for the functions in the
library, any preprocessor directives for definitions and library includes, and definitions of
complex types and global variables used in the library. Developing a larger embedded systems
project would include combining several libraries and using the functions in the libraries in main
appropriately where needed. Adjust your Makefile, described in the next section, to suite your
library files. Header guards in header files are necessary for large projects. If you have recursive

compilation errors, check this first.

10

V. Programming The Microcontroller

Required Software

For the AVR, you will want to install avrdude, AVR_GCC, avr-objcopy, and AVR_GDB. On your
favorite UNIX-based machine, use your favorite package manager to search for “AVR” and
download the above tools and any standard libraries found. The AVR-Crosspack can also be
downloaded online, including all of these tool in a single bundle. On Windows, an AVR IDE,

Atmel Studio, can also be used to accomplish programming the microcontroller.

The Makefile

Just like any old C program, a compiler must be used to compile the code into a machine
readable set of instruction. AVR-GCC does just that for the AVR microcontroller. By selecting
the microcontroller you are using in the flags for AVR-GCC as well as other flags, also common
in GCC, a large program with several libraries can be compiled and linked using AVR-GCC. The
following lines use AVR-GCC to compile three files (main.c, another_file.c, and some_sensor.c),
for the atmega328p (the -mmcu option specifies the device to compile for), with optimization and

error and warning checking in ANSI 99 C.

$ avr-gcc -Os -mmcu=atmega328p -DF CPU=16000000UL -Wall -Werror
-Wextra -Wimplicit -std=gnu99 -c¢ main.c another file.c some sensor.c

To link the separately compiled objects:

$ avr-gcc -mmcu=atmega328p -o main.elf main.o another file.o
some sSensor.o

The following command will convert the object file created above (main.elf) into a hex file to

prepare the program for flashing to the controller.

$ avr-objcopy -j .text -] .data -0 ihex main.elf main.hex

Then to finally burn the chip:

11

$ avrdude -F -p m328p -c usbasp -e -b 115200 -U flash:w:main.hex

avrdude needs a specified programmer (-c), baud rate (-b), and device (-p). To see a list of

supported devices or programmers, the following lines respectively apply:

$ avrdude -c ?
$ avrdude -p ?

For convenience's sake, throw the 5 lines of commands above into a Makefile with variables for
future adjustability and modularity.

The above commands can also program an Arduino board. Make sure to specify the correct
programmer for the board and the path to the device in avrdude.

For an Arduino Mega 2560:

$ avrdude -P /dev/tty.PATH TO DEVICE -p atmega2560 -c stk500v2 -e -Db
115200 -U flash:w:main.hex

12

VI. Systems Programming Methodology and Convention

The functionality of your loT project will most likely live within a state machine described in

software. A state machine defines the behavior (output) of your system at a given time

depending on the current state your machine is in and inputs given to the system.

HEATING

RelayOn ()

T=SP+Pos.0.5

Figure 3: A state machine diagram for a water heater.

Take for example the state
machine diagram in Figure 3. The
thunderbolt symbol indicates the
initial state of the state machine.
The circles (states) indicate the
name of the state, with a
horizontal line below that signifies
the outputs of the system while in
that state. The diagram, which
describes the behavior of a water
heater decides when to heat
water and when not to heat water
(output), depending on the input

to the system, temperature from a

temperature sensor in this example. The arrows on the diagram describe the transitions of the

machine depending on the inputs on them. When the machine is in IDLE, it is neither in the

COOLING or HEATING state, and it simply waits until an Enable message is received. When

the system is enabled, it goes into a safe COOLING state (where the heating device is off), and

begins to determine if the water needs to be heated up. If the temperature, T, goes below a

predetermined setpoint temperature for the water minus an offset from that temperature, the

system determines the water to be too cold, and it transitions into the heating state, where the

output is to turn a relay connected to a heating element on to begin to raise the temperature of

the water. Once the temperature of the water has reached the predetermined setpoint

temperature plus an offset, the state will transition back into the COOLING state where the

output tells the relay connected to the heating element to turn off. At any point (state) in the

13

state machine, the system can receive a disable signal, where the state will safely transition
back into the IDLE state where the relay is off.

Most systems should include an IDLE state in order to define a safe starting point for the system
until it has been initialized. Next, the active states will need to be defined. Draw the diagram
describing your system, and make sure to define every possible branch at every state. If there
are any gaps in the state machine logic, the system is vulnerable to failure. Your state machine
should describe the basic features of your system. It should designate the proper output

depending on what your system physically accomplishes.

To transition states in a state machine using software, we will first define some output functions
for each state. Let us take for example a system that waters a plant using a finite state machine

depending on how dry the soil is described in the diagram in Figure 4.

WATERING

WaterOn()

M=>S.P+Pos.0S

Figure 4: State machine diagram for soil moisture control

Since the system is initially in an idle state, we will create a flag representing the system’s
enabled status. We will also create a variable representing the current state of the finite state

machine. We will contain these two variables in a global system status struct.

14

struct SystemStatus
{
uint8 t enabled;
uint8 t currentState;
float setpointMoisture;
float offsetMoisture;
bi
typedef struct SystemStatus System;

Let us create a structure for a moisture sensor. Similarly to the temperature sensor in the
previous section, this structure will contain a current reading, state of operation, and an ID. We

will also arbitrarily assign unique values to #defined state names.

// moisture.h
#ifndef MOISTURE H
#define MOISTURE H

#define IDLE O
#define OFF 1
#define WATERING 2
#define DEFAULT SETPOINT 512 // arbitrary initial value
#define DEFAULT OFFSET 32 // also arbitrary
struct Moisture
{
float currentMoisture;
uint8 t sensorState;
uintl6é t sensorID;
bi
typedef struct Moisture Moisture;
Moisture *InitializeMoistureMemory (uintl6 t ID);
void ChangeState (System *sys, Moisture *moistureStatus);

#endif

There are several methods for transitioning states in a FSM through software, we will analyze a

few common strategies.

15

The If/Else Method:
Arguably the easiest state transitioning method in software. It will compare the current moisture

to the setpoint and offsets to determine the next state.

// moisture.c
void ChangeState (System *sys, Moisture *moistureStatus)
{
if (sys—->enabled == ENABLED) sys->currentState = OFF;
if (sys->currentState == IDLE) return;
if (moistureStatus->currentMoisture <=
(sys—->setpointMoisture + sys->offsetMoisture))

sys—->currentState = WATERING;
WaterOn () ;
}

else if (moistureStatus->currentMoisture >=
(sys—->setpointMoisture + sys->offsetMoisture))

sys—->currentState = OFF;
WaterOff () ;

The Valvano Method:

A professor in the Department of Electrical and Computer Engineering at The University of
Texas at Austin explains in his textbook on embedded systems, Embedded Systems:
Introduction to ARM Cortex-M Microcontrollers [12], chapter 10 on finite state machines defines
an elegant (more complicated) method for transitioning states using an array of structs and
some ingenuity. We will not cover this method because it involves knowing about function
pointers and more time to implement. Keep in mind this method, and check it out when working
on a larger project with more than three states. Valvano offers this section of his textbook online

for free with extensive documentation and examples.

Now that our state machine is implemented, let’s take a look at what our main function will look

like with more functionality.

16

// main.c
#include “system.h”
#include “moisture.h”
vold main (void)
{
Moisture *moistureSensor = NULL;
moistureSensor = InitializeMoistureMemory (1)
while (TRUE)
{
GrabMoisture (moistureSensor) ;
ChangeState (System, moistureSensor);

}

RS b b b S b b b S b b IR S b b b S b b b S b b b I b b b g b b b g b b S g b b I g b b S b b b S g b b S b b b S b b b S b b b S b b 4

*

// system.h
#ifndef SYSTEM H
#define SYSTEM H

finclude “moisture.h”

#define TRUE 1

#define FALSE O

#define ENABLED 1

#define DISABLED 0

struct SystemStatus

{
uint8 t enabled;
uint8 t currentState;
float setpointMoisture;
float offsetMoisture;

bi

typedef struct SystemStatus System;

System *InitializeSystemMemory(void);
void WaterOn (void) ;

void WaterOff (void) ;

#endif

RIS b b b S b b b S b b b S b b b S b b b S b b b S b b b g b b S g b b b S b b I g b b S b b b S g b b S b b b S b b b S b b b S b b 4

*

// system.c

#include “system.h”

#include “relay.h” // not yet covered
void InitializeSystemMemory (void)

{

17

System *newMem =
newMem =
if
{

NULL;

(newMem)

newMem->enabled =
newMem->currentState =

newMem->offsetMoisture

}

return newMem;

void WaterOn (void)

{

(System*)malloc (sizeof (System)) ;

DISABLED;

IDLE;
newMem->setpointMoisture

if (WATER RELAY PIN == CLOSED)
}
void WaterOff (void)
{

if (WATER RELAY PIN == OPEN)

WATER RELAY PIN

WATER RELAY PIN =

18

DEFAULT SETPOINT;
DEFAULT OFFSET;

= OPEN;

CLOSED;

VII: Controller Board Hardware Design & Sensors

Now that the logic for the controller has been created, we will cover how to actually actuate and
sense the world around the logic. Take a brief moment to think about your ability to sense. You
use your vision to read this text, and you relay that information with wires from your eyes
(sensors), to your brain (controller), to process the information. Your brain then relays that
processed information into some logic with synapses (similar to transistors in a processing unit).
The output of this system is you understanding the text, all while saving that information, on top
of knowing what to do with that information. Though this system is beautifully complicated and
impressive, it can be duplicated using microprocessors, sensors, and actuators/motors.
Consider the thought of you lifting your arm. Go ahead, and pick your arm up at a ninety degree
angle from your body. Your brain processed your thought to lift your arm, and sent the proper
signals (hopefully) to the controlling logic of your arm. The muscles in your arm acted as motors
with the help of dampened tension through tendons, and a pivoting socket.

On a microcontroller, to tell a motor to turn on, you simply apply voltage to the pins that require
voltage on the motor, much like the human system.

The microcontroller has ports that allow the user to tell the controller, through software, to allow
voltage to go through these pins, in whatever direction you please.

Depending on the microcontroller you use, check out the pinout diagram of your controller to
see where the various ports are located. Let us take PORTB from the Atmega 328P for
example. Though there are several ports on the controller, this particular port (made of several
pins), is designed for high frequency switching and high power output (ideal for driving LEDs for
example), according to the datasheet [13].

To tell the controller what you would like a specific pin on the port, let’s say pin 5, to be an
output, you must set the bi-direction register, DDRB, for PORTB, PIN5 to be an output.

Setting the pin’s bit in the DDR register (found in the data sheet) to an output, is as simple as
writing a ‘1’ to that register bit. A ‘0’ sets the pin to be an input. Reading the value of a register

(to see if a pin is set or not) will require the PINx register (where x is the PORT in question).

19

To drive voltage through the pin, after setting the direction of voltage, is as simple as writing a 1
for +5 Volt output, or a 0 bit for 0 Volt output. Let us make a simple program that blinks an LED
using an LED connected to PORTB, PINS5.

#include <avr/io.h>
#include <util/delay.h>
void main (void)
{
DDRB |= 0x80;
while (1)

{
PORTB "= 0x80; // XOR operation switches the bit

_delay ms(1000); // one second delay

The microcontroller also contains ports for reading analog voltages, to convert into digital values
using an Analog-to-Digital Converter (ADC). In order to perform an ADC operation, the
component connected to the ADC pin, an analog moisture sensor for example, must be set to
an input using the DDR register for that port. The rest of the conversion is specific to the
controller and what its ADC requires. The bitwise logic and operations to the registers to convert
an analog to digital value can be easily found in the datasheet.

A library for an ADC for an Arduino Mega 2560 can be found, and used as a reference on my
GitHub:

https://qgithub.com/SargisYonan/Autonomous Garden Project/tree/master/src/firmware/ADC

The controller can also serially communicate over USART (Universal
Synchronous/Asynchronous Receiver/Transmitter). This is useful for communicating with a
transceiver or other microcontrollers (LAN). To implement USART for sending serial data from
the controller, you will, once again, need to read the datasheet to find the right registers to
program. There exist several open-source libraries for this type of communication for several
microcontrollers. Be sure to search code repositories, or even the manufacturers website for

these libraries, as they will be needed for send data to a transceiver.

20

https://github.com/SargisYonan/Autonomous_Garden_Project/tree/master/src/firmware/ADC

Other communication protocols for sensors include 7°C (two-wire) and one-wire (formerly:

Dallas One-Wire). Depending on the sensor and the controller, the libraries to control these

devices will vary device-to-device.

To further understand these communication protocols, | recommend reading the data sheet for
each of your sensors and actuating components to understand exactly what commands that
part needs to work as intended. To choose the right sensors for your project depends on the
needs of your project. Be sure to start out cheap and small, and move up from there. For the
automated garden project, | used the cheapest soil moisture sensor available online, and a
servo to control a valve. The code for that project, as well as several other microcontroller
projects of mine with a variety of controller are openly available on my GitHub:

https://qgithub.com/SargisYonan

This part of the project will arguably be the hardest, most expensive, and most time consuming
aspect of it all. If you get this far, do not give up. You are more than half-way there, and in no
time, you will have a completed project, i.e. READ THE DATASHEETS IF YOU ARE STUCK.

21

https://github.com/SargisYonan/Autonomous_Garden_Project

VIII. Wireless Communications With A Microcontroller

At this point, you have hopefully constructed and successfully programmed your microcontroller.
The hardest part is over. There are several methods of transmitting signals, but we will only look
at two: ZigBee and Wi-Fi. Both are great for Internet communication, but Wi-Fi makes things a
bit easier since most homes have a wireless router already configured, reducing one point of
contact that the ZigBee would need. Since Wi-Fi is a bit simpler and documentation for that
method is readily available, | will mostly focus on ZigBee (specifically the ZigBee protocol used
on a Digi XBee radio). You will need two radios to communicate with one device, one connected
to the microcontroller itself, and one acting as a gateway to the internet (connected directly via
USB to a personal computer or a low-powered embedded Linux device (a Raspberry Pi in this
example).

The two XBees must be on the same personal area network (PAN ID configured using the
software intended for the XBee (Digi’'s XCTU), and each device needs a unique ID. The host
XBee, connected to a Raspberry Pi, will serially communicate over USB with the Pi using a

Python script. Using the Python Package Index:

$ pip install xbee
$ pip install pyserial

Your script should run in an infinite loop, as it will act as a server daemon aggregating data from
the microcontroller to its XBee, to your host XBee, and to a database. There are several free
databases online, one of which, FireBase DB, includes a Python library to easily communicate

to your account.

$ pip install python-firebase

Before we write the script to send data to and from the internet with the microcontroller, let’s

design a set of commands for the microcontroller. We will create commands to query the device

22

for its current state (IDLE, OFF, or WATERING), its current moisture value, and some
commands to change the moisture setpoint and offsets. We will assign arbitrary, yet unique,
8-bit values to each command to not get them mixed up, as well as error and success codes for

each transmission.

// commands-list.h
#ifndef COMMANDS LIST H_
#define COMMANDS LIST H_

/* DEFINITIONS OF RECEIVABLE COMMANDS */

#define DELIMITER 0x2D // terminating character
#define GET STATUS COMMAND OxAA
#define ENABLE SYSTEM COMMAND O0xXEE
#define DISABLE SYSTEM COMMAND 0xDD
#define GET MOISTURE READING COMMAND 0xBB
#define GET_TEMP READING COMMAND 0xCC
#define CHANGE MOISTURE SETPOINT OxXFF
#define CHANGE MOISTURE OFFSET Ox11

J*HxFxHFAHEAHALEL SUCCESS/ERROR CODES *****x%x/

#define UNRECOGNIZED_COMMAND_ERROR 0x44
#define NEGATIVE_MOISTURE_SETPOINT_ERROR 0x12
#define NEGATIVE_MOISTURE_OFFSET_ERROR 0x55
#define CHANGED_MOISTURE_OFFSET_SUCCESSFULLY 0x10
#define CHANGED_MOISTURE_SETPOINT_SUCCESSFULLY Ox11
#define DISABLED_SYSTEM_SUCCESSFULLY 0x12
#define ENABLED SYSTEM SUCCESSFULLY 0x13
#endif

With your new commands created, you will need to handle receiving and sending commands
with the microcontroller. Here is an example using a switch-case to process commands

received.

void ProcessCommand (void)

{
uint8 t rxByteArray[MAX RECEIVE LENGTH];

23

for(int i = 0; i < MAX RECEIVE LENGTH; i++)
{
if (RX_TX FUNCTION available() < 1)
{
_delay ms (XBEE CHAR MS TIMEOUT) ;
}

rxByteArray[i] = RX TX FUNCTION getc();
if (rxByteArray[i] == RX DELIMITER)
{

rxByteArray[i] = '\0';

break;

}
switch (rxByteArray[0])
{
case ENABLE:
ENABLED = true;
uprintf ("%d", ENABLE SUCCESS) ;
break;
case DISABLE:
ENABLED = false;
uprintf ("%d", DISABLE SUCCESS);
break;
case GET SENSOR STATUS:
SEND CURRENT SENSOR STATUS () ;
break;
case GET SENSOR VALUE:
SEND CURRENT SENSOR VALUE () ;
break;
case GET SENSOR TYPE:
SEND_SENSOR_TYPE();
break;
case PIN OFF:
TURN_OFF PIN();
break;
case PIN ON:
TURN_ON_PIN();
break;
default:
uprintf ("$d", INVALID COMMAND ERROR CODE) ;
break;

RX_TX_FUNCTION flush();

24

The subroutine, ProcessCommand(), accumulates bytes in the USART buffer of the device,
collects them, and decodes each opcode with the switch-case block, where there is a case for
each possible code defined in commands-list.h. The function uprintf() used above is a piece of
code | wrote to mimic the C stdio library’s printf for formatted printing with a USART buffer. You
may use this function for your project, but you must include some additional flags to AVR-GCC
in the Makefile.

vold uprintf (char* input string, ...)
{

va list valist;

char* newString;

uint8 t stringLength = 0;

va_start(valist, input string);

for (stringLength = 0; input string[stringLength] != '\0';
++stringlLength) {}

newString = (char*)malloc(stringLength * STRING MULTIPLIER)
vsprintf (newString, input string, valist);

// WRITING TO UART STREAM //

RX TX FUNCTION puts(newString);
free (newString);
va_end(valist);

AVR-GCC MAKEFILE FLAGS: -Wl,-u,vfprintf -lprintf flt -1m

The XBee’s D_OUT pin should be connected to the microcontroller’s TX pin, while the XBee’s
D_IN must be connected to the controller's RX pin. Keep in mind, the XBee needs 3.3 Volts, not
the usual 5 Volts for the microcontroller. Be sure to use a voltage regulator for the component if

using the same 5 volt power source for the two.

The Python script must take into consideration the checksumming for each packet sent to and
from the controller, and should also take into account the timing requirements for the XBee.
Assuming the use of FireBase DB, we will write a script to serially communicate packets to and

from the online database and the controller.

25

| will import the necessary libraries and create map for readable command names and their

equivalent byte code (defined in commands_list.h).

from firebase import firebase
from xbee import XBee

import serial

import time

import datetime

#####FIREBASE CREDS######

firebase = firebase.FirebaseApplication ('YOUR CREDENTIALS',

PORT = '/dev/tty.YOUR DEVICE PATH'
BAUD = 19200

ser = serial.Serial (PORT, BAUD)
xbee = XBee (ser)

ser.flushInput ()

ser.flushOutput ()

FunctionMap = {

"GET STATUS_COMMAND':"AA",
'"ENABLE SYSTEM COMMAND':"EE",
'"HALT SYSTEM COMMAND':"56",
'DISABLE SYSTEM COMMAND':"DD",
'"GET MOISTURE READING COMMAND':"BB",
'GET TEMP READING COMMAND':"CC",
'GET TEMP READING COMMAND':"56",
'CHANGE MOISTURE SETPOINT':"FE",
'CHANGE MOISTURE OFFSET':"11"

}

NO ARG = "00"

DEVICE ID = '4200000069"'

None)

| created a class that handles the necessary checksumming for a packet, and to make sending

packets easier.

class FrameGen:
DELIMITER = "2D"

def init (self):

self.hex base = '"7E 00 {:02X} 01 {:02X} {:02X}

self.length = 3 + 5
self.frameid =1

26

{:02X}

{:02X}"!

self.addr =1

self.options = 0

self.hex base = self.hex base.format (self.length,
self.frameid, (self.addr&0xFF00)>>8, self.addr&0x00FF, self.options)

def GenerateByteArray(self, command, argument):

hex generated = bytearray.fromhex (command + ' ' + argument +
' ' + self.DELIMITER)

self.frame = bytearray.fromhex (self.hex base)

self.frame.extend (hex generated)

self.frame.append (0XFF - (sum(self.frame[3:])&0xFF))

def SendFrame (self, ser):
ser.write (self.frame)

The rest of the script lives in an infinite loop where the Raspberry Pi will collect data from a
directory on the database, if there is a command on the database, it will generate the proper
packet, send it to the microcontroller and then wait for a response from the microcontroller to
push back to the database. The whole daemon can be found on the Autonomous Garden

Project Git Repository.

Conclusion

And there you have it. Your very first IoT device completed. Your new knowledge is powerful,
and with it, you can create and control whatever you wish from wherever you wish. The rest of
the project would involve interfacing with the database through a website or mobile app. There
are a plethora of resources for creating apps and website, so | will not cover that. The entire
project, including a website, along with all of the firmware for the controller, and the server script
can be found on the repository. Good luck with your projects, and all else. Above all, do not

underestimate the power of the datasheet.

27

Works Cited

[1]
Yarow, Jay. "Nest, Google's New Thermostat Company, Is Generating A Stunning $300 Million
In Annual Revenue." Business Insider. Business Insider, Inc, 14 Jan. 2014. Web. 18 Feb. 2016.

[2]
"Internet of Things Market to Reach $1.7 Trillion by 2020: IDC." The CIO Report RSS. Wall
Street Journal, n.d. Web. 18 Feb. 2016.

3]
http://www.newegg.com/Product/Product.aspx?ltem=9SIA3783NX3676&nm_mc=KNC-Google
MKP-PC&cm_mmc=KNC-GoogleMKP-PC-_-pla-_-Home+Automation+-+Thermostats- -9SIA37
83NX3676&gclid=CLeQ9vmMgssCFYsAaQodybAEZw&gclsrc=aw.ds

[4]

Sajjad, S.M.; Yousaf, M., "Security analysis of IEEE 802.15.4 MAC in the context of Internet of
Things (IoT)," in Information Assurance and Cyber Security (CIACS), 2014 Conference on , vol.,
no., pp.9-14, 12-13 June 2014

doi: 10.1109/CIACS.2014.6861324

[3]

Bari, N.; Mani, G.; Berkovich, S., "Internet of Things as a Methodological Concept," in
Computing for Geospatial Research and Application (COM.Geo), 2013 Fourth International
Conference on, vol., no., pp.48-55, 22-24 July 2013

doi: 10.1109/COMGEO0.2013.8

[6]

Zhang Ji; Qi Anwen, "The application of internet of things(IOT) in emergency management
system in China," in Technologies for Homeland Security (HST), 2010 IEEE International
Conference on, vol., no., pp.139-142, 8-10 Nov. 2010

doi: 10.1109/THS.2010.5655073

[7]

Rohokale, V.M.; Prasad, N.R.; Prasad, R., "A cooperative Internet of Things (loT) for rural
healthcare monitoring and control," in Wireless Communication, Vehicular Technology,
Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 2011
2nd International Conference on, vol., no., pp.1-6, Feb. 28 2011-March 3 2011

doi: 10.1109/WIRELESSVITAE.2011.5940920

28

[8]

Dave Evans (April 2011). "The Internet of Things: How the Next Evolution of the Internet Is
Changing Everything" (PDF). Cisco. Retrieved 15 February 2016.

[9]

"MegaAVR Microcontrollers." MegaAVR Microcontrollers. N.p., n.d. Web. 14 Mar. 2016.
<http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx>.

[10]
"Software Optimization Resources." . C++ and Assembly. Windows, Linux, BSD, Mac OS X.
N.p., n.d. Web. 14 Mar. 2016. <http://www.agner.org/optimize/>.

[11]
Http://www.nongnu.org/avr-libc/user-manual/ (n.d.): n. pag. Web.

[12]
Valvano, Jonathan W. Embedded Systems: Introduction to the ARM® Cortex(TM)-M
Microcontrollers: Volume 1. United States: Jonathan W. Valvano, 2012. Print.

[13]

Corporation, Atmel. (n.d.): n. pag. Web.
<http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-8
8PA-168A-168PA-328-328P_datasheet_Complete.pdf>.

29

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

